Grade 6 OEs and SEs

OEs:

- describe location in the first quadrant of a coordinate system, and rotate two-dimensional shapes

SEs:

- sort and classify quadrilaterals by geometric properties related to symmetry, angles, and sides, through investigation using a variety of tools (e.g., geoboard, dynamic geometry software) and strategies (e.g., using charts, using Venn diagrams);

- sort polygons according to the number of lines of symmetry and the order of rotational symmetry, through investigation using a variety of tools (e.g.,tracing paper, dynamic geometry software, Mira);

- identify, perform, and describe, through investigation using a variety of tools (e.g., grid paper, tissue paper, protractor, computer technology), rotations of 180° and clockwise and counterclockwise rotations of 90°, with the centre of rotation inside or outside the shape
-create and analyze designs made by reflecting, translating, and/or rotating a shape, or shapes, by 90° or 180° (Sample problem: Identify rotations of 90° or 180° that map congruent shapes, in a given design, onto each other.).

Summative Task 1

Demonstrate understanding of reflections, translations, and rotations. EQAO question.

Grade 7 OEs and SEs

OE's

- describe location in the four quadrants of a coordinate system, dilatate two-dimensional shapes, and apply transformations to create and analyze designs.

SE's

- sort and classify triangles and quadrilaterals by geometric properties related to symmetry, angles, and sides, through investigation using a variety of tools (e.g., geoboard, dynamic geometry software) and strategies (e.g., using charts, using Venn diagrams)

- distinguish between and compare similar shapes and congruent shapes, using a variety of tools (e.g., pattern blocks, grid paper, dynamic geometry software) and strategies (e.g., by showing that dilatations create similar shapes and that translations, rotations, and reflections generate congruent shapes)

Summative Task 1 Demonstrate understanding of reflections, translations, and rotations. EQAO question.

Day	Problem/Checkpoint	Intent
1	Warm-up: How many lines of symmetry does each road sign have?	starting point to see what ideas students have about symmetry.
WAAAAC	Activity: Use isometric dot paper. Draw a line through several dots. This line can be horizontal, vertical, or skewed. Make a design completely on one side of the drawn line that touches the line in some way. Make the mirror image of your design on the other side of the line. (Van De Walle Page 209) Consolidation: What is symmetry? Bansho Homework: Use 1 cm grid paper- Draw a design with 4 lines of symmetry.	

Day	Problem/Checkpoint	Intent
2 WAAAAC	Warm-up: You will need one of each type of Pattern Blocks and stickers. Place a sticker at one vertex of each block. Trace around the yellow Pattern block. The tracing is the frame. Record the position of the vertex with the sticker. Find and record the number of different ways you can place the yellow block in the frame. Do not turn the block over. Repeat the activity for each pattern block. (MMS Page 270) Activity: Construct a design using pattern blocks with different rotational	Finding the rotational symmetry of different figures
	symmetries. You should make a design with order 2, 3, 4, 6, and 12 rotational symmetry. Which of these designs have mirror symmetry as well? (Van De Walle Page 211) Consolidation:	
	Bansho- discuss results What is rotational symmetry?	
	Homework: What is the order of rotational symmetry for this figure? (MMS Page 281 #6)	
3	Gizmo- Rotational Symmetry	Review of rotational symmetry

Day	Problem/Checkpoint	Intent
4 Checkpoint	<form></form>	Demonstrate an understanding of symmetry and rotational symmetry.

Day	Problem/Checkpoint	Intent
6	Warm-up: Translate Figure ABC 5 squares right and 2 squares down. Draw the translated image. (MMS Page 249)	Explore translations. - Demonstrate an understanding that after a figure is translated, it's image is congruent and faces the same way.
WWAAAC	Activity: Begin with a 5 sided shape in the first quadrant. Make a list of the coordinates. Next, make a new set of coordinates by adding 3 to all of the x coordinates of the initial figure and then draw this figure. Create a third figure by subtracting 4 from each of the y coordinates of the original figure. Explain what happened. What will happen if you do both, add 3 to the x coordinates and subtract 4 from the y coordinates? Next, draw lines from the vertices of the original figure to the vertices of the last figure. What do you notice about these lines? (parallel and same length). What does adding or subtracting a fixed value to all coordinates do to a figure? (Van De Walle page 219)	
	Consolidation: Discuss parallel and same length. What do you notice about the figure and it's translated image? After a figure is translated, it's image is congruent and faces the same way.	
	Homework: Identify each move as a translation or a reflection. (ONAP Page 190)	

Day	Problem/Checkpoint	Intent
9	Warm Up: Draw the figure with the following coordinates: A(2,1), B(6,1), C(7,3). Multiply each set of coordinates by 2. Draw this figure. What do you notice?	Demonstrate an understanding of dilations.
	Activity: Bob planted a rectangular garden last year that had the coordinates of A (1,1) B (1,3) C (4,3) D (4,1). This year, he wants his garden to be three times as big as his garden last year. What will be the coordinates of the new garden? Bob's friend Jim really liked Bob's garden last year but only wants it to be half the size to fit in his own backyard. What are the coordinates of Jim's garden?	
	Homework: Choose one. Use a calculator if needed!!! Begin with a four-sided shape anywhere on the grid. Then make a list of the coordinates and make a new set of coordinates by multiplying each of the	
	original coordinates by 3. Then plot the resulting shape. What do you notice? Begin with a four-sided shape anywhere on the grid. Then make a list of the coordinates and make a new set of coordinates by multiplying each of the original coordinates by 1/2. Then plot the resulting shape. What do you notice?	

