Unit Plan - Gr. 6/7 Measurement- Term 2

Grade 6 OEs and SEs

OEs:

-determine the relationships among units and measurable attributes, including the area of a parallelogram,the area of a triangle,

SEs:

-construct a rectangle, a square, a triangle, and a parallelogram,using a variety of tools (e.g.,concrete materials,geoboard dynamic geometry software,grid paper), given the area and/or perimeter (Sample problem:Create two different triangles with an area of 12 square units, using a geoboard.);
-determine,through investigation using a variety of tools (e.g.,pattern blocks,Power Polygons,dynamic geometry software, grid paper) and strategies (e.g.,paper fold- ing,cutting, and rearranging),the relation- ship between the area of a rectangle and the areas of parallelograms and triangles, by decomposing (e.g.,cutting up a parallelogram into a rectangle and two congruent triangles) and composing (e.g.,combining two congruent triangles to form a parallelogram);
-solve problems involving the estimation and calculation of the areas of triangles and the areas of parallelograms (Sample problem:Calculate the areas of parallelograms that share the same base and the same height,including the special case where the parallelogram is a rectangle.);
-solve problems involving the estimation and calculation of the surface area and volume of triangular and rectangular prisms (Sample problem:How many square centimetres of wrapping paper are required to wrap a box that is 10 cm long, 8 cm wide, and 12 cm high?).
-determine,through investigation using a variety of tools (e.g.,nets,concrete materials,dynamic geometry software, Polydrons) and strategies,the surface area of rectangular and triangular prisms;
-develop the formulas for the area of a parallelogram (i.e.,Area of parallelogram= basex height) and the area of a triangle [i.e.,Area of triangle=(basex height) $\div 2$], using the area relationships among rectangles, parallelograms, and triangles (Sample problem:Use dynamic geometry software to show that parallelograms with the same height and the same base all have the same area.);

Summative Task 1

Demonstrate understanding of the surface area of a triangular prism.

Summative Task 2

Demonstrate understanding of the surface area of a rectangular prism.

Grade 7 OEs and SEs

OE's

- report on research into real-life applications of area measurements

SE's

- research and report on real-life applications of area measurements (e.g.,building a skateboard; painting a room)
- determine,through investigation using a variety of tools (e.g.,concrete materials, dynamic geometry software) and strategies, the relationship for calculating the area of a trapezoid,and generalize to develop the formula [i.e.,Area=(sum of lengths of parallel sidesx height) $\div 2]$ (Sample problem:Determine the relationship between the area of a parallelogram and the area of a trapezoid by composing a parallelogram from congruent trapezoids.);
- solve problems involving the estimation and calculation of the area of a trapezoid;
- estimate and calculate the area of composite two-dimensional shapes by decomposing into shapes with known area relationships (e.g.,rectangle,parallelogram,triangle) (Sample problem:Decompose a pentagon into shapes with known area relationships to find the area of the pentagon.);

- Summative Task 1

Demonstrate understanding of the surface area of a triangular prism.

Summative Task 2

Demonstrate understanding of the surface area of a rectangular prism.

Day	$\begin{array}{l}\text { Problem/Checkpoint }\end{array}$	
1	$\begin{array}{l}\text { Warm-up: Ask "What is } \\ \text { area? What is perimeter?" } \\ \text { Activity: Find the area and } \\ \text { the perimeter of the } \\ \text { playground. }\end{array}$	$\begin{array}{l}\text { starting point to see what } \\ \text { ideas students have about } \\ \text { measuring area and } \\ \text { perimeter }\end{array}$
WAAAAC	$\begin{array}{l}\text { Look fors: } \\ \text { 1. uses formula } \\ \text { 2. counting up using the } \\ \text { dimensions }\end{array}$	
3. uses grid paper		

Day	Problem/Checkpoint	Intent
2 WAAAAC	Warm-up: Jessica used 34 m of fencing to enclose a rectangular section of her backyard. What might the area of the enclosed section be? (MMS pg. 349 \#8) Activity: The Smiths are putting a flagstone deck around their pool. The pool is rectangular. Its dimensions are 8 m by 4 m . The deck will surround the pool. It will have a width of 2 m . What is the area of the deck? How much security fencing is required around the deck? (MMS pg 351 \#1) Consolidation: Bansho- discuss results Homework: The Jones are putting a flagstone deck around their pool. The pool is rectangular. Its dimensions are 10 m by 6 m . The deck will surround the pool. It will have a width of 3 m . What is the area of the deck? How much security fencing is required around the deck?	Differentiating area and perimeter with different dimensions Finding the perimeter without being told to find the perimeter knowledge, thinking Look fors: 1. calculate area 2. calculate perimeter 3. Take area of pool out of answer 4. add width of deck 5. used perimeter of deck to find fencing

Day	Problem/Checkpoint	Intent
3 WAAACCC	Warm-up: Look at a box (klennex box). Discuss how you could find out how much wrapping paper you would need to wrap the box. -discuss the faces of a rectangular prism (6) Activity: Question from Math Curriculum document (pg. 91) "How many square centimetres of wrapping paper are required to wrap a box that is 10 cm long, 8 cm wide, and 12 cm high?" Consolidation: BANSHO - surface area Homework: "How many square centimetres of wrapping paper are required to wrap a box that is 14 cm long, 12 cm wide, and 16 cm high?"	Calculating the surface area without a formula Finding out the formula to determine the surface area of a 3D rectangle Look fors: 1. area of 1 face and then x2 2. area of each face and then add

Day	Problem/Checkpoint	Intent
4 Checkpoint	Warm-up: take up homework Independent Activity: Surface Area question from EQAO	Apply the knowledge of surface area to a word problem Find surface area without being told to find the surface area
5	Gizmo	Review of area, perimeter, surface area

Day	Problem/Checkpoint	Intent
6	Warm-up: Activity 8.17 Page 255 in Van De Walle book "Area of a Parallelogram"	Use what they know about area of a rectangle to find the area of a parallelogram.
	Activity: Math Makes Sense Page 354 \#7 A student says the area of this parallelogram is 20 cm 2 . Explain the student's error?	
WWAAAC		
	Consolidation: discussion of methods from activity.	
	Homework: Draw a parallelogram with base 3 cm and height 2 cm . Then draw a parallelogram with twice the area.	

Day	Problem/Checkpoint	Intent		
7	Warm up: Activity 8.18 "Area of a Triangle" in Van De Walle book	Use what they know about area of a rectangle to find the area of a triangle.		
	Activity: Answer the question: "What is the relationship between the area of a triangle and the area of a parallelogram?"			
	Homework: "Draw a parallelogram on 1 cm grid paper. Draw a diagonal to divide the			
parallelogram into 2				
triangles. Find the area of				
each triangle. What is the				
relationship between a				
parallelogram and a				
triangle?"				
Math Makes Sense Page				
361 \#5			\quad	
:---				

Day	Problem/Checkpoint	Intent
8 AAACCCCCCCCC	Warm Up: Surface Area of a Triangular Prism What is the difference between a triangular prism and a rectangular prism? - discussion with a Tolberone bar Activity: How is the strategy for finding the surface area of a triangular prism similar to finding the area of a rectangular prism? How is it different. Use an example to support your answer. (Record the steps) Homework: Find the surface area of the triangular prism. Explain the steps you used. (Need example of triangle here)	Relating knowledge of surface area of a rectangular prism to surface area of a triangular prism
9 Checkpoint	Warm Up: Take up homework Independent Activity: page 369\#8 The rectangular faces of a triangular prism have areas of $30 \mathrm{~cm} 2,40 \mathrm{~cm} 2$, and 50 cm 2 . The 2 triangular faces have a combined area of 12 cm 2 . What are the dimensions of the triangular prism? Explain your thinking using pictures, numbers, and words.	Check understanding of surface area of a triangular prism.

Day	Problem/Checkpoint	Intent
10	Summative Task	
	Choice of 1 question.	
	Kara wants to paint her	
	barn roof. The dimensions	
	of the barn roof are: base	
	5 m , height 12 m , and the	
	third side of the triangle is	
	13 m . The prism is 25 m	
	long. There is a square air	
	vent in the roof 1 m by 1 m .	
	How much paint will Kara	
	need?	
	or	
	Jeremy's bedroom is 6 m	
	long, 4 m wide, and 3 m	
	high. It has a doorway 1 m	
	by 2 m and two small	
	windows each 1 m by 1 m .	
	How much wallpaper is	
	needed to cover the walls?	

